

Reg. No.:	
-----------	--

Question Paper Code: 42499

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fourth Semester

Electrical and Electronics Engineering EE2253 – CONTROL SYSTEMS

(Common to Electronics and Instrumentation Engineering/Instrumentation and Control Engineering)
(Regulations 2008)

[Also Common to PTEE2253 – Control System for BE (Part – Time) Fourth Semester – EEE – Regulations 2009]

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What are the basic elements of feedback control system?
- 2. State Mason's gain formula.
- 3. Draw the unit step input and the corresponding output signal for a first order system.
- 4. State the effect of PI controller on a system performance.
- 5. Draw the approximate polar plot for a Type 0 second order system.
- 6. Write the correlation between phase margin and damping factor.
- 7. How are the roots of the characteristic equation of a system related to stability?
- 8. What is the "Principle of Argument" used in Nyquist stability criterion?
- 9. What is the need for compensation in a control system?
- 10. Sketch an electric lag-lead compensator network.

PART - B

(5×16=80 Marks)

11. a) Write the differential equations governing the mechanical system shown in Fig.Q.11(a). Draw the force-voltage and force-current electrical analogous circuits. (8+8)

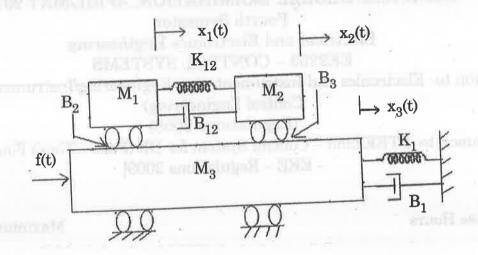


Fig. Q.11 (a)

(OR)

(OR)

- b) i) Derive the transfer function of a field controlled DC servomotor. (6)
 - ii) Explain the various block diagram reduction rules with examples. (10)
- 12. a) Derive the expression for the unit step response of a second order underdamped system. State the time domain specifications of the system. (12+4)
 - b) i) Find the dynamic error coefficients of the unity feedback system whose forward path transfer function is $G(s) = \frac{100}{s(s+10)}$. Find the steady state error of the system for the input $r(t) = 1 + t + 4t^2$. (10)
 - ii) Explain the effect of derivative control action on the time response of a second order control system. (6)
- 13. a) Construct Bode plot for the system whose open loop transfer function is given below and examine the stability of the closed-loop system. (16)

$$G(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$$
(OR)

- b) i) Explain the correlation between time and frequency domain specifications. (10)
 - ii) Find the resonant frequency for a unity feedback control system whose open loop transfer function is given by $G(s) = \frac{50}{s(s+6)}$. (6)
- 14. a) i) Using Routh stability criterion, determine the stability of the system represented by the characteristic equation s⁴ + 8s³ + 18s² + 16s + 5 = 0.
 Comment on the location of roots of the characteristic equation.
 - ii) Explain briefly the procedure for constructing Root locus of a system. (10)
 (OR)
 - b) i) Describe the effect of addition of a pole to a stable system. (8)
 - ii) By use of the Nyquist stability criterion, determine whether the closed-loop system having the following open-loop transfer function is stable or not. If not, how many closed-loop poles lie in the right-half of s-plane. (8)

$$G(s)H(s) = \frac{s+2}{(s+1)(s-1)}$$

- 15. a) Derive the transfer function of a lag compensator network. Explain the design procedure for a lag compensator using Bode plots. (16)

 (OR)
 - b) Design a lead compensator for a unity feedback system with an open loop transfer function $G(s) = \frac{K}{s(s+1)}$ for the specifications of $K_v = 10 \, \text{sec}^{-1}$ and phase margin $\phi_m = 35^\circ$. (16)

(10) In large the constant formers by a large and formers domain qualifications.

open loop transfer fromtion is given by $G(g) = \frac{\partial G}{\partial (g + G)}$ (6)

14. a) il Using Routh, stability oritanium, determine the stability of the system cuprescenced by the characteristic equation of + 15s² + 15s² + 16s + 5 = 0.

Community on the localization of spets of the characteristic equation.

(6)

 Explain briefly the procedure for constructing Rept form of a system. (10) (10)

- b) i) Describe the effect of addition of a pole to a stable system.
- in the me of the Nyquist stability criturion, determine whethor the closed-loop system having the following open-loop transfer function is stable or not. If not, how many closed-loop poles he in the right-half of a plant.

 $G(a)H(a) = \frac{a+2}{(a+1)(a-1)}$

 ii) Derive the transfer function of a lag compensator network. Explain the design procedure for a lag compensator using Bodg plots. (16)

Besign a lead compensator for a unity faulback system with an open loop transfer function $G(a) = \frac{K}{u(a+1)}$ for the specifications of $K_s = 10$ sec⁻¹ and phase margin $a_s = 35^{\circ}$.